14 research outputs found

    Automated segmentation of the optic nerve head for diagnosis of glaucoma

    No full text
    Glaucoma is the second most common cause of blindness worldwide. Low awareness and high costs connected to glaucoma are reasons to improve methods of screening and therapy. A well-established method for diagnosis of glaucoma is the examination of the optic nerve head using scanning-laser-tomography. This system acquires and analyzes the surface topography of the optic nerve head. The analysis that leads to a diagnosis of the disease depends on prior manual outlining of the optic nerve head by an experienced ophthalmologist. Our contribution presents a method for optic nerve head segmentation and its validation. The method is based on morphological operations, Hough transform, and an anchored active contour model. The results were validated by comparing the performance of different classifiers on data from a case-control study with contours of the optic nerve head manually outlined by an experienced ophthalmologist. We achieved the following results with respect to glaucoma diagnosis: linear discriminant analysis with 27.7% estimated error rate for automated segmentation (aut) and 26.8% estimated error rate for manual segmentation (man), classification trees with 25.2% (aut) and 22.0% (man) and bootstrap aggregation with 22.2% (aut) and 13.4% (man). It could thus be shown that our approach is suitable for automated diagnosis and screening of glaucoma

    Detection of the Optic Nerve Head in Fundus Images of the Retina Using the Hough Transform for Circles

    No full text
    Detection of the optic nerve head (ONH) is a key preprocessing component in algorithms for the automatic extraction of the anatomical structures of the retina. We propose a method to automatically locate the ONH in fundus images of the retina. The method includes edge detection using the Sobel operators and detection of circles using the Hough transform. The Hough transform assists in the detection of the center and radius of a circle that approximates the margin of the ONH. Forty images of the retina from the Digital Retinal Images for Vessel Extraction (DRIVE) dataset were used to test the performance of the proposed method. The center and boundary of the ONH were independently marked by an ophthalmologist for evaluation. Free-response receiver operating characteristics (FROC) analysis as well as measures of distance and overlap were used to evaluate the performance of the proposed method. The centers of the ONH were detected with an average distance of 0.36 mm to the corresponding centers marked by the ophthalmologist; the detected circles had an average overlap of 0.73 with the boundaries of the ONH drawn by the ophthalmologist. FROC analysis indicated a sensitivity of detection of 92.5% at 8.9 false-positives per image. With an intensity-based criterion for the selection of the circle and a limit of 40 pixels (0.8 mm) on the distance between the center of the detected circle and the manually identified center of the ONH, a successful detection rate of 90% was obtained with the DRIVE dataset
    corecore